PYTHON Mašinsko učenje PYTHON Mašinsko učenje
KOMPJUTER BIBLIOTEKA

PYTHON Mašinsko učenje

Šifra artikla: 345127
Isbn: 9788673105499
Python mašinsko učenje (prevod trećeg izdanja)

• Savladajte radne okvire, modele i tehnike koje omogućavaju mašinama da „uče“ iz podataka.
• Upotrebite scikit-learn za mašinsko učenje i TensorFlow za duboko učenje.
• Primenite mašinsko učenje na klasifikaciju slike, analizu sentimenta, inteligentne veb aplikacije i drugo.
• Izgradite i obučite neuronske mreže, GAN-ove i druge modele.
• Otkrijte najbolju praksu za procenu i podešavanje modela.
• Naučite da predvidite kontinuirane ciljne ishode upotrebom analize regresije.
• „Zaronite“ dublje u tekstualne podatke i podatke društvenih medija upotrebom analize sentimenta.

„Python mašinsko učenje (treće izdanje)“ je sveobuhvatan vodič za mašinsko učenje i duboko učenje upotrebom Pythona. Ova knjiga služi kao uputstvo, korak po korak, i kao referenca kojoj ćete se vraćati dok gradite sisteme mašinskog učenja. Ona uključuje jasna objašnjenja, vizuelizacije i radne primere i obuhvata detaljno sve osnovne tehnike mašinskog učenja. Dok vas neke knjige uče samo da pratite instrukcije, u ovoj knjizi za mašinsko učenje autori Raschka i Mirjalili uče vas principima mašinskog učenja, omogućavajući vam da sami izgradite modele i aplikacije. Ovo treće izdanje je ažurirano za TensorFlow 2.0 i predstavlja čitaocima njegove nove Keras API funkcije, kao i funkcije najnovijeg izdanja scikit-learna. Knjiga je takođe proširena opisom vrhunskih tehnika učenja uslovljavanjem, koje su zasnovane na dubokom učenju, a takođe su predstavljeni i GAN-ovi. Istražićemo i podoblast obrade prirodnog jezika (NLP) pod nazivom analiza sentimenta, što će vam pomoći da naučite kako da koristite algoritme mašinskog učenja za klasifikovanje dokumenata. Ova knjiga je vaš pratilac za mašinsko učenje sa Pythonom, bez obzira da li ste Python programer koji želi da nauči mašinsko učenje ili imate iskustva i želite da produbite znanje najnovijim dostignućima.

• Treće izdanje je najprodavanija, veoma popularna knjiga o Python mašinskom učenju.
• Jasna i intuitivna objašnjenja će vas uvesti duboko u teoriju i praksu Python mašinskog učenja.
• Knjiga je potpuno ažurirana i proširena da bi obuhvatila TensorFlow 2, Generative Adversarial Network modele, učenje uslovljavanjem i najbolju praksu.

Tabela sadržaja

Poglavlje 1 Kako da računarima omogućite da uče iz podataka
Poglavlje 2 Treniranje jednostavnih algoritama mašinskog učenja za klasifikaciju
Poglavlje 3 Predstavljanje klasifikatora mašinskog učenja upotrebom scikit-learna
Poglavlje 4 Izgradnja dobrih skupova podataka za trening - pretprocesiranje podataka
Poglavlje 5 Kompresovanje podataka pomoću redukcije dimenzionalnosti
Poglavlje 6 Učenje najbolje prakse za procenu modela i podešavanje hiperparametara
Poglavlje 7 Kombinovanje različitih modela za učenje udruživanjem
Poglavlje 8 Primena mašinskog učenja na analizu sentimenta
Poglavlje 9 Ugrađivanje modela mašinskog učenja u veb aplikaciju
Poglavlje 10 Predviđanje promenljivih kontinualnog cilja pomoću analize regresije
Poglavlje 11 Upotreba neoznačenih podataka - analiza klasterovanja
Poglavlje 12 Implementiranje višeslojne veštačke neuronske mreže „od nule“
Poglavlje 13 Paralelizacija treninga neuronske mreže pomoću TensorFlowa
Poglavlje 14 Detaljnije - mehanika TensorFlowa
Poglavlje 15 Klasifikacija slika pomoću dubokih konvolucionih neuronskih mreža
Poglavlje 16 Modelovanje sekvencijalnih podataka upotrebom rekurentnih neuronskih mreža
Poglavlje 17 Generative Adversarial Networks za sintetizovanje novih podataka
Poglavlje 18 Učenje uslovljavanjem za donošenje odluka u kompleksnim okruženjima
0,00 RSD
2.970,00 RSD
2.970,00 RSD
Ušteda: 0,00 RSD
Obavesti me o sniženju

Količinski popust od 10% za 3 i više artikala u korpi

  • NSZ
0+ komada na lageru
Količina: 1 Kom
2
1
Sačuvajte u listi želja
Pomoć
Python mašinsko učenje (prevod trećeg izdanja)

• Savladajte radne okvire, modele i tehnike koje omogućavaju mašinama da „uče“ iz podataka.
• Upotrebite scikit-learn za mašinsko učenje i TensorFlow za duboko učenje.
• Primenite mašinsko učenje na klasifikaciju slike, analizu sentimenta, inteligentne veb aplikacije i drugo.
• Izgradite i obučite neuronske mreže, GAN-ove i druge modele.
• Otkrijte najbolju praksu za procenu i podešavanje modela.
• Naučite da predvidite kontinuirane ciljne ishode upotrebom analize regresije.
• „Zaronite“ dublje u tekstualne podatke i podatke društvenih medija upotrebom analize sentimenta.

„Python mašinsko učenje (treće izdanje)“ je sveobuhvatan vodič za mašinsko učenje i duboko učenje upotrebom Pythona. Ova knjiga služi kao uputstvo, korak po korak, i kao referenca kojoj ćete se vraćati dok gradite sisteme mašinskog učenja. Ona uključuje jasna objašnjenja, vizuelizacije i radne primere i obuhvata detaljno sve osnovne tehnike mašinskog učenja. Dok vas neke knjige uče samo da pratite instrukcije, u ovoj knjizi za mašinsko učenje autori Raschka i Mirjalili uče vas principima mašinskog učenja, omogućavajući vam da sami izgradite modele i aplikacije. Ovo treće izdanje je ažurirano za TensorFlow 2.0 i predstavlja čitaocima njegove nove Keras API funkcije, kao i funkcije najnovijeg izdanja scikit-learna. Knjiga je takođe proširena opisom vrhunskih tehnika učenja uslovljavanjem, koje su zasnovane na dubokom učenju, a takođe su predstavljeni i GAN-ovi. Istražićemo i podoblast obrade prirodnog jezika (NLP) pod nazivom analiza sentimenta, što će vam pomoći da naučite kako da koristite algoritme mašinskog učenja za klasifikovanje dokumenata. Ova knjiga je vaš pratilac za mašinsko učenje sa Pythonom, bez obzira da li ste Python programer koji želi da nauči mašinsko učenje ili imate iskustva i želite da produbite znanje najnovijim dostignućima.

• Treće izdanje je najprodavanija, veoma popularna knjiga o Python mašinskom učenju.
• Jasna i intuitivna objašnjenja će vas uvesti duboko u teoriju i praksu Python mašinskog učenja.
• Knjiga je potpuno ažurirana i proširena da bi obuhvatila TensorFlow 2, Generative Adversarial Network modele, učenje uslovljavanjem i najbolju praksu.

Tabela sadržaja

Poglavlje 1 Kako da računarima omogućite da uče iz podataka
Poglavlje 2 Treniranje jednostavnih algoritama mašinskog učenja za klasifikaciju
Poglavlje 3 Predstavljanje klasifikatora mašinskog učenja upotrebom scikit-learna
Poglavlje 4 Izgradnja dobrih skupova podataka za trening - pretprocesiranje podataka
Poglavlje 5 Kompresovanje podataka pomoću redukcije dimenzionalnosti
Poglavlje 6 Učenje najbolje prakse za procenu modela i podešavanje hiperparametara
Poglavlje 7 Kombinovanje različitih modela za učenje udruživanjem
Poglavlje 8 Primena mašinskog učenja na analizu sentimenta
Poglavlje 9 Ugrađivanje modela mašinskog učenja u veb aplikaciju
Poglavlje 10 Predviđanje promenljivih kontinualnog cilja pomoću analize regresije
Poglavlje 11 Upotreba neoznačenih podataka - analiza klasterovanja
Poglavlje 12 Implementiranje višeslojne veštačke neuronske mreže „od nule“
Poglavlje 13 Paralelizacija treninga neuronske mreže pomoću TensorFlowa
Poglavlje 14 Detaljnije - mehanika TensorFlowa
Poglavlje 15 Klasifikacija slika pomoću dubokih konvolucionih neuronskih mreža
Poglavlje 16 Modelovanje sekvencijalnih podataka upotrebom rekurentnih neuronskih mreža
Poglavlje 17 Generative Adversarial Networks za sintetizovanje novih podataka
Poglavlje 18 Učenje uslovljavanjem za donošenje odluka u kompleksnim okruženjima

Ostavi komentar

Trenutno nema komentara
Karakteristika Vrednost
Kategorija KOMPJUTERSKA LITERATURA
Autor Upom Malik, Matt Goldwasser, Benjamin Johnston
Izdavač KOMPJUTER BIBLIOTEKA
Pismo Latinica
Povez Broš
Godina2020
Format17x24
Strana526

Slični proizvodi

Hobi elektroničarima može biti zanimljivo da nauče nove veštine koje mogu koristiti u k...
1.702,80 RSD
1.892,00 RSD
Um caruje: Kotlin je potpun uvod u programiranje na Kotlinu. Ova praktična knjiga pomaž...
2.200,00 RSD
Pojednostavite JavaScript kodiranje upotrebom kompozicija funkcija, protočne obrade, ul...
2.310,00 RSD
Jedinstvena na ovim prostorima, nije prevod sa engleskog, pristupačna svima i pored teo...
1.386,00 RSD
1.540,00 RSD
Ova knjiga (u dopunjenom i revidiranom izdanju) ažurirana je tako da obuhvata funkcije ...
2.640,00 RSD
Šta ćete naučiti - Kreirajte međuplatformske aplikacije za Windows, macOS, Linux, iOS ...
2.970,00 RSD
Nevidljivi rat za prikupljanje vaših podataka i kontrolu vašeg života Vaš provajder mo...
1.200,00 RSD
Pragmatični programer: vaš put do stručnosti (2. izdanje - povodom 20. godišnjice 1. iz...
1.980,00 RSD
Kolekcija projekata sa senzorskima Više od 40 projekata za Arduino, Raspberry Pi i ESP...
1.702,80 RSD
1.892,00 RSD
Preduzmite svoje prve korake da biste postali potpuno kvalifikovani analitičar podataka...
2.200,00 RSD
Pomoć
string(0) ""
string(0) ""